Country/region and language selection

Passive sputtering (PVD method)

Atomise to recreate

PVD technology (Physical Vapour Deposition) is used to apply thin films measuring just micrometres to materials of various qualities. To do so, a block of material, consisting of the film material to be applied, is evaporated in a vacuum. This creates a gas mixture of atomic particles, which precipitate onto the substrate. In plasma-assisted PVD processes, a cathode is evaporated by being bombarded with ions. This sputter or evaporation process can take place at room temperature. It is divided into three stages: Sputtering, diffusion, and film growth.

Plasmabeschichtung

Sputtern

Sputtern - besonders das Magnetronsputtern - ist die mengenmäßig bedeutendste Methode der industriellen Plasmabeschichtung. Die Sputtertechnik beruht auf dem Phänomen der Kathodenzerstäubung, einem grundlegenden Phänomen in elektrisch angeregten Plasmen: Der positive Ionenstrom im Plasma trifft auf die Kathode und schlägt dort Material heraus.

Üblicherweise wird als Kathode ein Magnetron verwendet welches das Plasma vor der Kathode konzentriert und damit die höchsten Sputterraten bzw. Beschichtungsraten auf dem Substrat ermöglicht.

Da das Substrat auch einem gewissen energetischen Einfluss der Ionen ausgesetzt ist, können durch Magnetronsputtern im Gegensatz zur thermischen Verdampfung sehr dichte und feinkörnige Schichten erreicht werden.

Zum Sputtern werden in der Regel leitfähige Targets (Materialvorrat auf der Kathode) verwendet. Damit eignen sich besonders Metalle und leitfähige Keramiken. Diese können in einem Edelgas gesputtert werden, so dass die Zusammensetzung der Schicht dem Target entspricht. Beim Reaktivsputtern werden durch Zusatz von Sauerstoff oder Stickstoff als Reaktivgas auch isolierende Oxide oder Nitride beschichtet. Diese haben zahlreiche Anwendungen als dielektrische transparente Schutzschichten.

Zum Sputtern von einem einzelnen Target werden Gleichstrom-Generatoren eingesetzt, die, je nach Prozess auch gepulst betrieben werden. Zum Sputtern isolierender Schichten wird in der Regel das Dual-Magnetronsputtern eingesetzt, bei dem mit einer Wechselstromversorgung zwei Magentrons im Wechsel gegeneinander betrieben werden, so dass sich keine isolierende Schicht auf der Anode ablagert. Spezielle Generatoren hierfür sind MF-Generatoren oder Bipolargeneratoren.

Bei Sputter-Pllasmen kommt es häufig vor, dass in der Glimmentladung ein lokaler Lichtbogen, auch Arc genannt, zündet.  Generatoren für Sputterprozesse müssen mit einer geeigneten Vorrichtung zum Arc Management ausgestattet sein.

High power impulse sputtering (HiPIMS)

Das Hochleistungs-Impulssputtern, bekannt als HiPIMS (High impulse magnetron sputtering) gewinnt bei der Herstellung von Hartstoff- und Verschleißschutzschichten zunehmend Interesse, denn die Anforderungen an die Schichtqualität sind besonders hoch. Hierfür werden spezielle Puls-Stromversorgungen benötigt, die ihre Leistung in sehr kurzen und energiereichen Pulsen mit einer typischen Dauer unter 100µs und einer Wiederholrate im 100 Hz-Bereich abgeben.

Die HiPIMS-Generatoren müssen außer dem Pulsbetrieb auch die Anforderung an alle Plasma-Stromversorgungen erfüllen: Prozessangepasste präzise Regelung des Ausgangs und ein schnelles Arc-Management.

Plasma Enhanced Chemical Vapor Deposition

Die Chemical Vapor Deposition, auch CVD-Technologie genannt, bringt dünnste Schichten auf Materialien unterschiedlichster Qualitäten auf. Dabei wird aus gasförmigen Stoffen auf thermischem Weg ein festes Beschichtungsmaterial erzeugt, welches sich auf dem Substrat als kristalline oder amorphe Schicht absetzt.

In der herkömmlichen thermischen Beschichtung spaltet sich das Prozessgas erst an der erhitzten Substratoberfläche in seine Reaktionsprodukte auf. Bei der plasmaunterstützten Gasphasenabscheidung (PECVD - Plasma Enhanced Chemical Vapor Deposition) findet diese Reaktion schon durch elektrische Ionisation in der Gasphase statt.

Die wesentlich niedrigeren Temperaturen sind ein großer Vorteil von PECVD, denn nur damit können temperaturempfindliche Substratwerkstoffe wie Kunststoff eingesetzt werden.

PECVD ist damit ein vielseitiges Verfahren in der Fertigung mikroelektronischer Bauelemente, Flachbildschirmen, Solarmodulen und optischer Komponenten. Es können metallene, halbleitende, oder isolierende Schichten aufgetragen werden. Auch komplexe Schichtsysteme sind realisierbar.

Contact
TRUMPF Ltd.
Fax 01582 399260
Email
Service & contact